
 1Triamec Motion AG

Controlling Triamec Drives through TAM API

Initial Training
Control an axis
● Development Environment
● Basic functions of the TAM API
Background
● Topology, registers, configuration and simulation
● Commissioning tool: TAM System Explorer
Advanced tasks
● Move sequence
● Measurement

27.09.2023

 2Triamec Motion AG

Controlling Triamec Drives through TAM API

Initial Training – Part I
Control an axis
● Development Environment
● Basic functions of the TAM API
Background
● Topology, registers, configuration and simulation
● Commissioning tool: TAM System Explorer
Advanced tasks
● Move sequence
● Measurement

 3Triamec Motion AG

Development Environment

Microsoft Windows 10 – 64-bit recommended – or Windows 11
One of those:
● Visual Studio 2017 Express – free

– Install the .NET Framework 4.8 Developer pack
● Visual Studio 2019 or 2022 – free for open source projects and small organizations

– Select the .NET desktop development workload
– Add the optional .NET Framework 4.8 development tools

Install the TAM Software

https://visualstudio.microsoft.com/vs/express/
https://dotnet.microsoft.com/download/dotnet-framework/thank-you/net48-developer-pack-offline-installer
https://visualstudio.microsoft.com/vs/older-downloads/#visual-studio-2019-and-other-products
https://visualstudio.microsoft.com/vs/
https://www.triamec.com/en/tam-software-support.html

 4Triamec Motion AG

Development Environment

Browse to
https://github.com/Triamec/HelloWorld
Get the sample, for example as ZIP
● Extract .zip to your documents

https://github.com/Triamec/HelloWorld

 5Triamec Motion AG

Development Environment

Open solution file
Hello World!\Hello World!.sln

Build the solution (Menu Build > Build
Solution)

 6Triamec Motion AG

Simulate the Drive

Study HelloWorldForm.cs in Text Editor
● Open using right click

● Expand the Hello world code region

Start the app with F5
● A simulation of a drive is used
● Set breakpoints to step through the

code

 7Triamec Motion AG

Access Drive

Create the root object of the structure

Add local system to the structure

Add connected drives to the structure

Locate axis in the structure (various strategies possible)

 8Triamec Motion AG

Read State

Access the drive’s parametrization and state

Let code completion assist you

 9Triamec Motion AG

Enable Controller

Take notice of inline documentation (shown when hovering or typing)

 10Triamec Motion AG

Command Movement

Operate on the TamAxis object

● Often used methods:
– MoveAbsolute – Move to position
– MoveVelocity – Move with constant velocity
– Stop – Return to stand still
– SetPosition – Apply an offset to the position axis

 11Triamec Motion AG

Run the App

Check whether
● the controller can be enabled
● the position changes

– when moving
– at a lower rate at 10% velocity

● a move can be reprogrammed with a
new move

 12Triamec Motion AG

Customize the App

Modify the constants to adapt to your hardware

 13Triamec Motion AG

Achievements

Set up development environment
Working code at disposal
Control an already configured axis
Examine the state of axis and drive
Employ inline help to examine the API
surface

 14Triamec Motion AG

Controlling Triamec Drives through TAM API

Initial Training – Part II
Control an axis
● Development Environment
● Basic functions of the TAM API
Background
● Topology, registers, configuration and offline mode
● Commissioning tool: TAM System Explorer
Advanced tasks
● Move sequence
● Measurement

 15Triamec Motion AG

Communication Topology

Topology Top of hierarchy (not shown in TAM System Explorer)
System Represents the local or a remote computer
Adapter Computer hardware used to access the drive
Link Communication layer, represents the wire
Station Addressable party within the link
Device Represents the microprocessor of the drive
Register Structured representation of parametrization,

commands and visible state (signals) of the drive.

 16Triamec Motion AG

Navigate the Structure

Top-down
● Names System.Adapters[0].Link.Stations[0]…
● Generic System.Nodes[0].Nodes[0]…
● Search var address = new Uri("tam://mc/X");

station =

 (TamStation)system.FindTamNode(address);

● Cast ITamDevice to ITamDrive
● Access TamAxis instances with ITamDrive.Axes
Bottom-up
● Step by step device.Station.Link.Adapter.System

● Generic device.ParentNode.ParentNode…
● Go to root device.NavigateToRoot()

 17Triamec Motion AG

Commissioning

Use the TAM System Explorer to
● commission the axis
● tune the controller
● manage configuration
● diagnose and measure
● run side-by-side with app:

– Tria-Link and USB: exclusive!
– Ethernet: possible

Homepage
Servo Drive Setup Guide

https://www.triamec.com/de/tam-system-explorer.html
https://www.triamec.com/en/documents.html

 18Triamec Motion AG

Development Environment

Manage dependencies with NuGets
● Menu Project > Manage NuGet Packages…
● Application runs independently from any

installed TAM Software, apart from drivers.
● Update to a newer version of the

TAM Software with ease.
When to use which NuGets:
● Triamec.Tam.TriaLink: Applications
● Triamec.Tools.TamaCompiler

Projects with Tama programs
● Triamec.Tam.UI

Integrate TAM System Explorer
● Triamec.Tam.Simulation NuGet not needed

in production.

https://docs.microsoft.com/en-us/nuget/

 19Triamec Motion AG

TAM API

Homepage
Access offline help via TAM System Explorer
● Browse to Software folder

– Developer Manual
– TAM API Reference

https://www.triamec.com/de/TAM-API.html
https://www.triamec.com/de/TAM-API.html?file=files/medien/documents/manuals/SWNET_TamApiDeveloperManual_EP034.pdf

 20Triamec Motion AG

Set Up Communication

Force specific communication channel

● Specifying the channel speeds up start-up.

 21Triamec Motion AG

Navigate to Registers

Import Namespace using Triamec.Tam.Rlid19;

Start at Drive ((Register)drive.Register).General…

Start at Axis ((Axis)axis.Register).Parameters…

Use TAM System Explorer when writing register access code
● Visualize the structure
● Copy & Paste from Address bar at bottom of register grid

 22Triamec Motion AG

Register Classes

Parameters
Configure the drive for the intended application
Commands
Change state, for example to set a digital output
Signals
Observe public state in real-time
Information
Document properties of an axis. Not affecting
behavior of the drive in any way

 23Triamec Motion AG

Operate on Leaf Registers

Get value int value = register1.Read();

Set value register2.Write(32f);

Apply parameters after having written a set of them.
parameterRegister1.Write(x);

parameterRegister2.Write(y);

parameterRegister3.Write(z);

parameterRegister1.Commit();

● One Commit call on any of these parameters suffices
● Ensures atomic change
● Commit returns as soon as the drive has applied

parametrization
● Registers apart from parameters don’t need to be committed

 24Triamec Motion AG

Configuration

The TAM Configuration (.TAMcfg) is an XML text file containing the parametrization of
all drives in a system.
Applied to the system during commissioning and persisted on the drives
It follows that for many scenarios, an app doesn’t need to configure the drive.
In a system with multiple drives, drives are matched by the
General.Parameters.DeviceName parameter.
Despite that name, the DeviceName is correlated with the TamStation’s name!

 25Triamec Motion AG

Offline Environment

Examine a machine offline by means of its TAM Configuration (with TAM System Explorer)
● Number of drives, their type and other properties
● Parametrization
● Whole register interface
● Bode tuning
Simplified path planner
Data acquisition
Not simulated: hardware, controllers, most signals
Only use for early prototyping of your application while no hardware is available

 26Triamec Motion AG

Achievements

Find help & documentation for TAM API and TAM System Explorer
Quickly access the drive from your app
Parametrize drive
Gain some insight in the C# project setup
Observe and change drive state
Know when a TAM Configuration file is needed

 27Triamec Motion AG

Controlling Triamec Drives through TAM API

Initial Training – Part III
Control an axis
● Development Environment
● Basic functions of the TAM API
Background
● Topology, registers, configuration and simulation
● Commissioning tool: TAM System Explorer
Advanced tasks
● Move sequence
● Measurement

 28Triamec Motion AG

Acquisition Sample

Acquisition.sln demonstrates move sequence and measurement

● Example screenshots in this presentation are taken from this sample code

 29Triamec Motion AG

Move Sequences

Programming a sequence requires waiting for the move to end.
Some API calls return a TamRequest instance for this sake, for example
● TamAxis.MoveAbsolute

● TamAxis.Control

Chain WaitForSuccess or WaitForSuccessAsync to the command as follows:

Needs preparation: ITamDevice.AddStateObserver must be called at startup
When calling WaitForSuccess on the result of TamAxis.MoveVelocity, another
thread needs to reprogram the axis eventually, for example using TamAxis.Stop

 30Triamec Motion AG

TamRequest Features

Wait… methods – see above
CurrentState: Pending | Executing | Terminated
Termination: None | Completed | Superseded | …
Can fail due to
● Timeout
● The axis is in the wrong state
● The axis was reprogrammed before the move ended
● The firmware doesn’t support the command
● Programming error
Observe using
● Termination event
● Transition event on ITamDevice and TamAxis instances

 31Triamec Motion AG

Acquire Real-Time data

Import namespaces

Create an object to hold data from any register

● Sampling time zero means fastest possible (100 kHz)
● Often 10 kHz – TimeSpan.FromTicks(TimeSpan.TicksPerMillisecond / 10) – suffices
Acquire data

Get data out of the buffer

 32Triamec Motion AG

Synchronized Data and Continuous Measurement

Create an acquisition object

Sample data repeatedly, contiguous and without delay

 33Triamec Motion AG

Asynchronous Acquisition

Use asynchronous Task workflow

await _acquisition.AcquireAsync(duration, null);

Fill(_chart.Series["Position"], _positionVariable, 1);

Fill(_chart.Series["Position Error"], _positionErrorVariable, 1E3);

 34Triamec Motion AG

Cleaning Up

What to do before the application ends
● Ensure the axis is in a safe place.
● Disable controller
axis.Control(AxisControlCommands.Disable).WaitForSuccess(Timeout);

● Remove any state observer drive.RemoveStateObserver(this);

● Dispose the root object _topology.Dispose();

 35Triamec Motion AG

Achievements

Detect end of movement and other long-running tasks on the drive
Obtain real-time data from the drive in the way that fits best in your application
Leave system in a sane state

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

