
Tama Real-Time Drive Programming

User Guide

With Tama Programs, the drive firmware can be extended with customer specific implementations run-
ning at up to 10kHz real-time. These programs are written in C# and compilation is integrated in the C#
project tool chain. It is possible to load and run the programs during run-time.

This guide starts with a quick start example giving a short introduction how to setup, build, load and ex-
ecute a simple Tama Program.

An extensive reference follows covering programming, execution, automation and debugging.

Document SWTAMA_UserGuide_EP
Version 004, 2025-02-14
Source Q:\doc\Software\SWTAMA\
Destination T:\doc\Org\Templates
Owner chm www.triamec.com

https://www.triamec.com/
https://triamec.com/

Table of Contents

1. Introduction...2

2. Quick Start Example...............................2
2.1 Preparations..................................3
2.2 Open and Build in Visual Studio... .3
2.3 Load and Run the Tama Program. .5
2.4 Create Your Own Programs...........5

3. Authoring Tama Programs.....................5
3.1 Principal Structure.........................5
3.2 Isochronous and Asynchronous Tama

Task..6
3.3 TAM Registers................................7
3.4 Errors and Limitations...................11
3.5 Combine Multiple Programs..........15
3.6 Build Process.................................15

4. Running Tama Programs........................16
4.1 Loading and Enabling....................16
4.2 Debugging.....................................18
4.3 Tama Runtime Errors.....................19
4.4 Performance Tuning......................19
4.5 Task Load Monitoring....................20

5. Advanced Topics....................................20
5.1 Tama File Compilation...................20
5.2 API...23
5.3 Firmware Evolution.......................25

References...25

Revision History.....................................25

1. Introduction
A Tama Program is a piece of software which can be loaded to a Triamec Servo Drive during run time
and which is executed with up to 10kHz in real time. With a Tama Program it is possible to extend the
drive firmware with user specific implementations. Typical applications with Tama Programs are:

 Stand alone control of a drive
 Adaptive gain controller
 Adaptive feed forward
 Compensation algorithms
 etc.

The Tama Program has access to all registers in the TAM register tree. This allows full control over the
axis and the drive. The Tama code is typically written in C#.

The first part of this user guide gives a short introduction of how to setup, build, load and execute a
simple Tama Program. After reading the first part, you should be able to create and run your own sim-
ple Tama Programs.

The second part provides additional information regarding best practice, debugging, technical details
and special cases.

2. Quick Start Example
This quick start example demonstrates the best practice of how to create and run a simple Tama
Program.

SWTAMA_UserGuide_EP004 2025-02-14 2 /26

https://triamec.com/

2.1 Preparations
The following software needs to be installed:

 TAM Software (see [1] section ‘Software Installation’)
 .NET Framework 4.8 Developer Pack
 M icrosoft Visual Studio IDE version 2017 or newer (e.g. Professional, Community, Express1). When

available, enable the .NET-development workload.

For testing of the Tama Program a running Triamec Servo Drive is required which is accessible via TAM
System Explorer from the PC (see [1] section ‘Connect Drive to PC’).

A connection to the Internet is required to allow loading of the required Triamec DLLs (NuGet Pack-
ages).

2.2 Open and Build in Visual Studio
This section demonstrates how a Tama Program can be loaded and compiled in Visual Studio:

1. Get the ‘HelloTama’ Solution from GitHub.
 Browse to https://github.com/Triamec/HelloTama
 Expand the “Code” dropdown.
 Choose to download the code as a ZIP archive (Download ZIP).
 Extract the ZIP Archive.

1 Download link for VS Express 2017 https://aka.ms/vs/15/release/vs_WDExpress.exe

SWTAMA_UserGuide_EP004 2025-02-14 3 /26

https://github.com/Triamec/HelloTama
https://github.com/Triamec/HelloTama
https://visualstudio.microsoft.com/downloads/
https://aka.ms/vs/15/release/vs_WDExpress.exe
https://dotnet.microsoft.com/en-us/download/dotnet-framework/thank-you/net48-developer-pack-offline-installer
https://www.triamec.com/en/tam-software-support.html
https://triamec.com/

2. Open your Visual Studio IDE and open the ‘HelloTama’ solution with
 File > Open Project > select the file HelloTama.sln > Open
 Now the Solution Explorer (menu View > Solution Explorer) should show the structure dis-

played in Figure 1.

3. In the Solution Explorer right click the Solution and click Restore NuGet Packages.

SWTAMA_UserGuide_EP004 2025-02-14 4 /26

Figure 1: Download the HelloTama sample from GitHub

Figure 2: Tama Solution in Solution Explorer

https://triamec.com/

4. To view the source code double click HelloTamaCode.cs in the Solution Explorer. The sample
code simply assigns Boolean[0] register to Boolean[1]. Later you might extend the sample code
with your own implementation.

5. To build the Tama Program click menu Build > Build Solution
6. In the Output window (View > Output) check if the build succeeded and check if there are no

build errors listed in the Error List (View > Error List).
If the build failed, close the solution (File > Close Solution) and reopen it again by following the
steps above.

7. If the build succeeds, the generated Tama Program can be found at the two following locations
 In the Solution Explorer right click the Solution and click Open Folder in File Explorer and navi-

gate to: ‘bin\Debug\TamaProject.HelloTama.tama’
 In the TAM System Explorer click File > Open Workspace Folder and navigate to ‘Tama\
TamaProject.HelloTama.tama’

2.3 Load and Run the Tama Program
See section 4.1 for how to load and run the Tama Program. Only the isochronous Tama VM needs to be
enabled for the ‘HelloTama’ example.

To check for the proper function of the Tama Program toggle the register state of

 ...Application.Variables.Booleans[0].

If the Tama Program is running correctly, the following register should change its state accordingly.

 ...Application.Variables.Booleans[1].

2.4 Create Your Own Programs
The following approaches are recommended to create your own Tama Programs or Tama Solutions.

A) It is possible to have several Tama Programs in one VS Solution.
To create a new Tama Program simply copy an existing program file *.cs to the same Solution,
adjust the file name and the name of the Tama class and make sure to have no collisions in the
namespace. With the command Build > Build Solution all Tama Programs of the current solu-
tion will be generated.
This approach is recommended if the programs share a similar context for example the pro-
grams will be assigned to different drives of the same machine or access the same library.

B) To create Tama Programs in a different context it is recommended to copy the whole solution,
do the required renaming and delete obsolete files.

3. Authoring Tama Programs
This section shows how Tama code is structured and gives some basic recommendation how to design
Tama Programs.

3.1 Principal Structure
The TamaProject template (see section 2.2) is used to illustrate the basic structure of a Tama Program.

SWTAMA_UserGuide_EP004 2025-02-14 5 /26

https://triamec.com/

First, some using directives bring in Tama and TAM register related symbols:

using Triamec.Tama.Vmid5; // used for interpretation of Tama attributes

using Triamec.Tama.Rlid19; // used for register access

Now the Tama class can be implemented:
[Tama] // attribute to indicate the starting point to the Tama compiler

static class TamaProgram // name of the Tama program
{

 The [Tama] Attribute indicates the starting point for the compiler. If the VS Solution contains more
than one class with the [Tama] attribute the classes are handled and built as separate Tama classes
and for each of them a Tama Program will be generated.

 The name of the class can be chosen arbitrarily. The class name will be used for the name of the
files generated files e.g. HelloTama.tama.

 It is reasonable to set the static class modifier, because typically, a Tama class is not instantiated.
The C# compiler will keep you from accidentally adding instance members.

The Tama class contains the following Main() method:

 // attribute to indicate the entry point for the isochronous task

 [TamaTask(Task.IsochronousMain)]

 // main function, (name is not relevant)

 static void Main()
 {

 // program start

 Register.Application.Variables.Booleans[1] = Register.Application.Variables.Booleans[0];
 }

}

 The [TamaTask(…)] attribute indicates the entry point to the Tama Program. Its argument sets
the type of the Tama Task (see section 3.2). In the actual case, the task type is set to
IsochronousMain which causes the Main() function to be called every 10kHz cycle.

 The method name itself is not relevant and can be chosen arbitrarily.
 The method body shows a simple read and write application of TAM registers.

3.2 Isochronous and Asynchronous Tama Task
As mentioned in section 3.1 with the argument of the[TamaTask(…)] attribute, different Tama tasks
can be selected. The selected Tama Task defines how the Tama Program is executed. The available
tasks are

 Isochronous Main Task
 Asynochronous Main Task

This section describes the properties of this tasks. As a starting point and also for most application it is
recommended to use Isochronous Main Task.

3.2.1 Isochronous Main Task

For most applications the Isochronous Main Task is the fist choice as it allows real time programming of
the drive at 10kHz with the most flexibility.

SWTAMA_UserGuide_EP004 2025-02-14 6 /26

https://triamec.com/

 With the argument Task.IsochronousMain the Isochronous Main Task is selected.
 The Isochronous Main Task is executed at 10kHz synchronously with the 10kHz task of the con-

troller. As an example the Main() function of the ‘HalloTama’ program in section section 3.1 is
called every 0.1ms.

 The program is started with Enable and stopped with the Disable of the Isochronous Tama (see
4.1).

 The task has to be completed within one 10kHz cycle (see also section 3.2.1). If the execution ex-
ceeds its time budget within one 1kHz cycle a ComputingTime error occurs.

3.2.2 Asynchronous Main Task

The Asynchronous Main Task has a cycle time of 2.5kHz. It allows to execute a program over four 10kHz
cycles while it can be interrupted by other tasks. It is intended for less demanding application regarding
cycle time and to reduce the CPU load of larger Tama Programs.

 With the argument Task.AsynchronousMain the Asynchronous Main Task is selected.
 The Asynchronous Main Task is executed over four 10kHz cycles.
 The program is started with Enable and stopped with the Disable of the Asynchronous Tama (see

4.1).
 The task has to be completed within four 10kHz cycles. If the execution exceeds its time budget a

ComputingTime error occurs.

3.2.3 Multiple Tama Tasks in one Tama Program

It is possible to combine both Isochronous and Asynchronous Tama Tasks in one Tama Program. The
Isochronous Main Task is called first. The remaining time budget per cycle is then used to proceed with
the execution of the Asynchronous Main Task.

ImportantImportant The Asynochronous Main Task has a strictly separated memory space from the
Isochronous Main Task. The only way to share data between the Asynochronous Main
Task and the other tasks is via TAM registers.

3.3 TAM Registers
TAM Registers are the interface for the interaction between the Tama Program and the servo drive and
also for the interaction between the Tama Program and applications outside of the drive. All registers
of the TAM Register Tree can be accessed by the Tama Program. For more information about TAM
Registers and the TAM Register Tree see also [1] and [2].

Most floating point values of the TAM register tree are single precision (float). C# floating point liter-
als are double precision (double) by default. To avoid compiler errors the f suffix needs to be added to
the value to create a float literal, for instance:

Register.Application.Variables.Floats[0] = 0.5f;

3.3.1 TAM Register Layout ID (RLID)

The Register Layout ID (RLID) identifies different principal versions of the TAM Register Tree. The layout
of the TAM Register Tree could vary between different devices, hardware and firmware versions.

You find the RLID of a certain device by selecting the device node in the TAM Register Tree (see Figure

SWTAMA_UserGuide_EP004 2025-02-14 7 /26

https://triamec.com/

3).

For the register access in the Tama Program the used register layout must match with the register lay-
out of the device. If the RLID of the device is 19 the TAM Register class can be accessed in Tama
Programs with Triamec.Tama.Rlid19.Register. The following example shows how the register
DcBusVoltage can be read to the local variable uDC:

float uDc = Triamec.Tama.Rlid19.Register.General.Signals.DcBusVoltage;

To shorten the code line it is common practice to import the register layout name space with the using
directive.
using Triamec.Tama.Rlid19; // used for register access

With this the example above can be written as

float uDc = Register.General.Signals.DcBusVoltage;

3.3.2 Signals

Signals can be read from the TAM Register as shown in the example above. The read value represents
the state of the register at the beginning of the current 10kHz cycle.

3.3.3 Commands

The following example shows the usage of the Commands PathPlanner.Xnew and PathPlanner.Command

if (Register.Application.Variables.Booleans[0]) // start move if true
{

 Register.Axes_1.Commands.PathPlanner.Xnew = 0.5; // target position

 Register.Axes_1.Commands.PathPlanner.Command =

PathPlannerCommand.MoveAbsolute; // move command

 Register.Application.Variables.Booleans[0] = false;
}

In general, commands are processed with the next 10kHz cycle. An exception is the CommitParameter
command (see below).

SWTAMA_UserGuide_EP004 2025-02-14 8 /26

Figure 3: Display of RLID in TAM System Explorer.

https://triamec.com/

CommitParameter:

The CommitParameter command is used to activate a bunch of parameters of the same CommitGroup
(see also section 3.3.4). Depending on the type of parameters and the current task load the
CommitParameter command could take more than one 10kHz cycle. A successful commit is acknowl-
edged by the device firmware by setting the value of the CommitParameter command back to False.
A new CommitParameter command should only be issued if the state of the commit is False.

Inject Command:

Injection points allow to add a signal to certain controller states. For example this could be used to ap-
ply position compensation to the encoder signal. The following list shows all available injection registers
with the related injection point in Figure 4.

1) PathPlanner.InjectedX

2) PathPlanner.InjectedA

3) PathPlanner.InjectedV

4) Encoder[0].InjectedPosition

5) Encoder[1].InjectedPosition

6) CurrentController.InjectedIq

7) CurrentController.InjectedId

8) CurrentController.InjectedUq

9) CurrentController.InjectedUd

If the value of an inject command is changed, the internal value is ramped linearly to the commanded
value over the following 10kHz cycle.

3.3.4 Parameters

The following example shows how the value of a parameter can be changed with Tama code.

if (Register.Application.Variables.Booleans[0]) // do parameter change if true
{

Register.Axes_0.Parameters.PositionController.Controllers_0.Kp = 0.5f; // set new gain

if (!Register.Axes_0.Commands.PositionController.CommitParameter) // ready for commit?
{

SWTAMA_UserGuide_EP004 2025-02-14 9 /26

Figure 4: Controller block diagram with injection points.

https://triamec.com/

Register.Axes_0.Commands.PositionController.CommitParameter = true; // set commit

Register.Application.Variables.Booleans[0] = false;
}

}

It is important to know, that parameters generally belong to a Commit Group. A change of a parameter
only becomes active, if this Commit Group is committed (see also section 3.3.3). In the example above
the Commit Group of Kp is PositionController and therefore the related commit command is set.

How to Find the Commit Group

The Commit Group can be found by selection the desired parameter in the TAM Register Tree. The Gen-
eral tab in the tab panel shows the Commit Group under Tags > commitGroup

RemarkRemark If a parameter is part of more than one Commit Group a commit of all these groups is
required!

3.3.5 Application Registers

The Register.Application branch contains registers used to interact with the Tama Program from ‘outside’
e.g. TAM System Explorer or a higher-level control system. Most registers are generic and their purpose
is only determined by the Tama Program or the programmer respectively.

Parameters and Variables

Register.Application.Parameters and Register.Application.Variables can be used to store float, double,
integer and boolean values. In contrast to variables, the current value of a parameter is stored per-
sistently if the persistence command is executed and saved in the TAM configuration with the com-
mand File > Save TAM Configuration… (see also [1]).

Tables

TAM Tables are a versatile feature which can be used for compensation tables, data collection, data
storage etc. It is possible to access the TAM Tables in different ways:

 TAM Register access with the TAM System Explorer
 File access via web browser to exchange tables
 Table access via a Tama Program.

The following example shows reading and writing of a table with a Tama Program:

SWTAMA_UserGuide_EP004 2025-02-14 10 /26

Figure 5: The Commit Group of controller gain Kp is PositionController

https://triamec.com/

 float myTableValue1 = 3.1415f;

 float myTableValue2 = Register.Application.Tables.Small1.Data.Float[0]; // read table

 Register.Application.Tables.Small1.Data.Float[0] = myTableValue1; // write table

RemarkRemark Float, Integer, Double access the same table fields, just the interpretation of the value
varies.

For more information about TAM tables see [5].

Axes

The Register.Application.Axes registers can be used to implement a coordinate transformation with a
Tama Program. For more information see [4].

TamaControl

AsynchronousVirtualMachineState and IsochronousVirtualMachineState: These registers reflect whether
the respective tasks are executed.

AsynchronousMainCommand, IsochronousMainCommand: These are general purpose registers with the
same properties as Register.Application.Variables.Integers (see section above). Only the naming indicates
that these registers are intended to control a state machine programmed within a Tama Program.

AsynchronousMainState, IsochronousMainState: These are general purpose registers with the same prop-
erties as Register.Application.Variables.Integers (see section above). They are intended to reflect the state
of a Tama Program.
Both states are initialized to 0 after transferring a Tama program.

CautionCaution The lower 6 bits of these registers and changes to those bits are tracked by the TAM soft-
ware. Therefore, these registers must not be used for values changing with high frequency.
Otherwise, denial of service might occur due to message flooding.
Likewise, the Tama program must not change drive and axis states in a high frequent man-
ner.

AsynchronousPc, IsochronousPc: Indicates a recently executed Tama byte code instruction of the asyn-
chronous or isochronous Tama task. PC is an abbreviation for program counter. This value could be
helpful for debugging (see section 4.2).

3.4 Errors and Limitations
Compilation errors from the Tama compiler are shown in the Error List window. Double clicking will lo-
cate the source of the error in most cases. If you don't know how to fix a compilation error, consult the
Tama Compiler API and Error Reference [3] which elaborates cause and remedy for each error.

RemarkRemark Unfortunately, for legacy C# projects (like those provided as samples on GitHub with sup-
port for legacy Visual Studio 2017), the error identifiers are not shown in the Error List win-
dow, but only in the compile output window.

RemarkRemark The Tama compiler is not invoked for checking while typing.

The following sub-chapters describe properties and limitations which must be considered when writing
Tama code. Please read them carefully, since Tama only supports a sub-set of the C# language.

SWTAMA_UserGuide_EP004 2025-02-14 11 /26

https://triamec.com/

3.4.1 Initialization

The static members of a Tama class are initialized directly after transferring the Tama Program to the
device. Consequently, the static constructor of a Tama class is executed directly after the transfer.

Initialization Rules

Allocate new objects only in the static constructor or in a static member initialization, or in methods
called therein. Otherwise, a TamaOutOfMemory error will likely occur at runtime. There is no garbage
collector like on a regular platform targeted by C#.

If you separate the Tama program code in multiple classes, be aware that only the class defining the
Tama tasks may contain a static constructor and assignments to static field definitions. You can
write initialization logic for the other classes in their instance constructor, for example.

NoteNote This last limitation exists due to the compiler and may be removed in the future.

No Array Initializers

Initialization like the following is not supported:

static float[] positions = {1, 2, 4, 4};

Instead, arrays must be initialized element wise:

static float[] positions = new float[4];

static TamaProgram() {
 positions[0] = 1;
 positions[1] = 2;
 for (int i = 2; i < 4; i++) {
 positions[i] = 4;
 }

}

3.4.2 Memory Isolation of Tasks

Be aware that the asynchronous and isochronous Tama tasks run in a separate virtual environment.
Therefore,

 The static class constructor runs twice. Don’t alter registers in an incremental fashion at this stage.
 Each task has its own version of static fields.
 Each task has a separate object heap. Objects allocated in the static class constructor will actually

be allocated twice.

CautionCaution The only possibility to share data between the tasks is via registers.

C# experts can imagine that the code will behave as if they had specified ThreadLocal<T> as the field
type.

3.4.3 No Register Caching

One of the most obvious peculiarities of Tama programs is their repeated dereferencing of registers
throughout the code like a mantra:

static void ReadParameters() {

SWTAMA_UserGuide_EP004 2025-02-14 12 /26

https://learn.microsoft.com/en-us/dotnet/api/system.threading.threadlocal-1
https://triamec.com/

 _wait = Register.Application.Parameters.Integers[0];
 _repeats = Register.Application.Parameters.Integers[1];
 _stepSize = Register.Application.Parameters.Floats[0];
 _stepVelocity = Register.Application.Parameters.Floats[1];
 _startPositionPositive = Register.Application.Parameters.Floats[2];
 _startPositionNegative = Register.Application.Parameters.Floats[3];
}

Actually, you could write this method like this and get the exact same binary:

static void ReadParameters() {

 var parameters = Register.Application.Parameters;
 var integers = parameters.Integers;
 _wait = integers[0];
 _repeats = integers[1];
 var floats = parameters.Floats;
 _stepSize = floats[0];
 _stepVelocity = floats[1];
 _startPositionPositive = floats[2];
 _startPositionNegative = floats[3];

}

While this might result in less characters used, it doesn’t seem to improve readability.

More important, you cannot pass such local variables to methods like this:

static void Read(ITamaArray<int> array) {
 _wait = array[0];
 _repeats = array[1];

}

static void ReadParameters() {
 if (true) {

 Read(Register.Application.Parameters.Integers);

 } else {

 Read(Register.Application.Variables.Integers);
 }
}

This ends up with an error TAMAC0002 currently.

Namely, it’s not possible to parameterize the axis number of a drive in order to write code which works
for either axis:

Register.Axes_0.Commands.PathPlanner.Xnew = step;

Compound Assignments

Compound assignments (+=, *=, …) to registers in one method may lead to the error TAMAC0002 in
certain cases, since such assignments might be transformed into registers saved into temporary vari-
ables by the C# compiler.

While the following snippet compiles (with the C# compiler at the time of writing),

Register.Application.Variables.Integers[0] *= 5;

Register.Application.Variables.Integers[1] *= 5;

this slightly modified version fails with TAMAC0002:

Register.Application.Variables.Integers[0] *= 5;

SWTAMA_UserGuide_EP004 2025-02-14 13 /26

https://triamec.com/

Register.Application.Parameters.Integers[1] *= 5;

Rewriting a statement without compound assignment by repeating the register on the right-hand side
will work around the limitation:

Register.Application.Variables.Integers[0] = Register.Application.Variables.Integers[0] * 5;

Register.Application.Parameters.Integers[1] = Register.Application.Parameters.Integers[1] * 5;

AdviceAdvice Due to this limitation, we recommend avoiding compound assignments with registers in-
volved.

3.4.4 No Support for 64-Bit Integers and Other Types

While there exist a handful of 64-Bit integer registers, Tama isn’t currently able to process them.

Likewise, the attempt to work with strings or other classes from the base class libraries will end up in a
pile of compiler errors.

Specifically, Tama programs aren’t designed to output text.

Unordered Floating Point Values

When comparing floating point values, there exist two different ways when unordered values (NaN) are
encountered. One way always yields true for unordered comparisons, the other way always yields
false. For reference, compare the documentation for the cgt and cgt.un CIL opcodes.

Tama doesn’t make a difference here. Therefore, a Tama program might execute differently with un-
ordered floating point values compared to when the same algorithm was executed on the x86 architec-
ture.

3.4.5 No Recursive Calls

In a Tama program, a method must not call itself. This restriction also holds transitively, when a method
A calls method B, method B calls method C and method C calls method A, for instance.

3.4.6 No Generics and Tuples

Generic types aren’t supported since the runtime cannot create specialized generic types.

This also impedes the use of tuples, for example to handle multiple return values in a method.

Instead of a code like this

void Foo() {

 var (x, y) = Bar();

 // use x and y
}

(int x, int y) Bar() {

// compute x and y
return (1, 2);

}

use several out parameters instead:

void Foo() {

 Bar(out int x, out int y);

 // use x and y

SWTAMA_UserGuide_EP004 2025-02-14 14 /26

https://learn.microsoft.com/en-us/dotnet/api/system.reflection.emit.opcodes.cgt_un
https://learn.microsoft.com/en-us/dotnet/api/system.reflection.emit.opcodes.cgt
https://triamec.com/

}

void Bar(out int x, out int y) {

 // compute x and y
 x = 1; y = 1;
}

3.5 Combine Multiple Programs
A drive can only call one synchronous Tama Program or/and one asynchronous Tama Program. There-
fore it is recommended to structure your programs in such a way, that combining them in one Tama
Program is possible with little effort.

Best practice is to structure your programs in classes. These classes implement for example a thick
method. The classes are then instantiated in the Tama Class and the thick method is called by the
isochronous or asynchronous Tama task.

Special care has to be taken, to avoid overlapping register access between different classes.

3.6 Build Process
The following steps explain how to build a Tama Program with Microsoft Visual Studio (see also Figure
6):

1. Go to Project > [Project Name] Properties > Build and check if Optimize Code is checked.

2. To build the Tama Program click menu Build > Build Solution
For each Tama class which is part of the solution a Tama Program is generated.

3. In the Output window (View > Output) check if the build succeeded and check if there are no
build errors listed in the Error List (View > Error List).

4. If the build succeeds the following files are generated for each Tama class:
[ProjectName].[NameSpaceName].[TamaClassName].tama
[ProjectName].[NameSpaceName].[TamaClassName].asm
 The build files can be found at the following two locations

◦ In the Solution Explorer right click the Project and click Open Folder in File Explorer and navi-
gate to: ‘...Tama\bin\Debug’ or ‘...Tama\bin\Release’ depending on the used build
configuration.

◦ In the TAM System Explorer click File > Open Workspace Folder and navigate to ‘...\Tama’.

The *.tama file contains the byte-code of the compiled Tama Program. This is the file which is finally
loaded to the drive to run the Tama Program.

The *.asm file contains the plain-text version of the compiled Tama Program. The *.asm file could be
useful for code analysis and debugging (see also 4.2).

SWTAMA_UserGuide_EP004 2025-02-14 15 /26

https://triamec.com/

4. Running Tama Programs
In order to run a Tama Program, it first needs to be transferred to the device. Enabling one or more of
its tasks are separate steps in this process.

4.1 Loading and Enabling
To load a Tama Program to the device, the Tama Manager in the register tree of TAM System Explorer is
used. The TamaManager is located below the device node in the TAM Register Tree.

The following steps are needed to load and run a Tama program on a device:

1. Open the context menu with a right click on the Tama Manager (Figure 7).

2. Click Assign Tama program… and select a Tama program which has the file extension *.tama.
Click Open. The program will now be transferred to the device.

3. Click Enable isochronous Tama VM or Enable asynchronous Tama VM depending on if the
isochronous or the asynchronous Tama task or both has to be started.

To remove the Tama program from the device, use the Dismiss Tama program... menu item.

With Download Tama program... an already loaded Tama Program is loaded again.

WarningWarning A running Tama Program can strongly influence the behavior of a device. In case of unex-
pected behavior, first check if a Tama Program is enabled and consider disabling it.

SWTAMA_UserGuide_EP004 2025-02-14 16 /26

Figure 6: Build and load Tama Programs.

DeviceVS Solution

TamaClass1

TamaClass2

Isochron

TamaClassX

...

101100

TamaClass1.asm TamaClass1.tama

101100

101100

TamaClass2.asm TamaClass2.tama

001101

101100

TamaClassX.asm TamaClassX.tama

101010

Build

Firmware

001101

Isochron

Asynchron

Load Tama
Isochron

Asynchron

Isochron Isochron

Isochron

Asynchron

Isochron

Asynchron

... ...

https://triamec.com/

4.1.1 Saving a Tama Program Persistent on the Device

If a new Tama program is loaded, the steps to persist the TAM Configuration have to be executed again,
to also persist the new Tama Program [1].

A persisted Tama Program will automatically be loaded after a restart of the device but remains dis-
abled. To automatically enable a Tama program at start-up see section 4.1.3.

NoteNote Remember that you only persist the binary form of the Tama program. Therefore, we
strongly recommend using a version control system to maintain the Tama program source
code.

4.1.2 Saving a Tama Program in a TAM Configuration File

When the TAM Configuration is saved (see [1]) while a Tama Program is loaded, the Tama Program is
also saved to the configuration.

4.1.3 Auto Start

A persistent Tama Program can be enabled automatically at startup.

To enable the Isochronous Tama at startup set

 General.Parameters.EnableIsochronousTama = True.

To enable the Asynchronous Tama at startup set

 General.Parameters.EnableAsynchronousTama = True.

As with other parameters, you must persist these on the drive to be available at startup.

SWTAMA_UserGuide_EP004 2025-02-14 17 /26

Figure 7: Context Menu of the Tama Manager. The menu entries also indicate whether the virtual machines are cur-
rently enabled or not.

https://triamec.com/

4.2 Debugging
Tama Programs do not permit interactive debugging. Instead, the correct function of programs is exam-
ined by monitoring the affected TAM registers. Scoping of such registers can be very helpful for debug-
ging.

To observe internal variables of the program, the variables have to be made visible by assigning them to
an appropriate TAM register e.g. Application.Variables.Floats.

// used for debugging

Register.Application.Variables.Floats[0] = myDebuggingVariable;

Debugging Tama Runtime Errors

In case of a Tama runtime error, for instance due to a null divisor or if no memory is left, the Tama pro -
gram is no longer executed and the axes are disabled. In this situation, the TAM register Applica-
tion.TamaControl.IsochronousPc (or AsynchronousPc respectively) points to the next bytecode instruction.

With the help of the corresponding assembly file (*.asm) and the program counter this failed instruc-
tion can be identified and it is possible to relate the failed instruction to the Tama code.

Example:

A Tama Program causes the following runtime error:

ERR 6976 Tama division by zero IsochronousMain PC 0xef

Likewise, the register IsochronousPc shows the value 0x000000EF.

Considering the corresponding *.asm file, one can easily identify the suspicious division in the method
DemoFunction().

Method Utilities.MovingAverage.DemoFunction

0x000000e8 ldc 0x3f800000 # 1

0x000000ea ldloc 0x00000000 # load this : MovingAverage

0x000000ec ldfld 0x00000005 # load field divisor : float

0x000000ee div.r4 # float division

0x000000ef ret 0x00000001 # return from routine

By looking at the related Tama code (see below) it is apparent, that the runtime error was caused be-
cause the member variable divisor was never assigned to a value unequal to zero.

float divisor;

/***

* Runtime error demo

***/

public float DemoFunction()

{

return 1.0f / divisor;

}

SWTAMA_UserGuide_EP004 2025-02-14 18 /26

https://triamec.com/

4.3 Tama Runtime Errors
If an instruction of a Tama Program can not be processed, for instance due to e.g. because of a null divi -
sor, a device error is issued, the program is no longer executed and the controllers turn off.

Error name Description

TamaOutOfMemory The program memory became full during heap allocation.
Reduce the number or size of objects allocated. Object heap, static variables
and the call stack are all maintained in the same memory.

TamaDivisionByZero An attempt was made to divide by zero.

TamaNullReference An object property was requested, but there was no object reference set.

TamaIndexOutOfRange An array element index was outside the range of the array.

TamaCorruptedState Tama Program state was corrupted. This value is returned when an unknown
operation code is encountered.
This indicates a defect in the code supporting Tama programs and should be
reported to Triamec.

ComputingTime The limit of the computing time is exceeded. Consider chapter 4.5: Perfor-
mance Tuning

Often, such an error cannot be acknowledged since it will be immediately reproduced. Dismiss the
Tama program in such a circumstance by using the context menu of the Tama Manager (see Figure 7).

4.4 Task Load Monitoring
The task load generated by the Tama Program is tracked in the register
General.Signals.SystemLoad.DurationTamaIso

The firmware monitors the load of the whole 10 kHz task in the register
General.Signals.SystemLoad.Duration10kHz

In case of an Isochronous Tama, a ComputingTime error is issued if Duration10kHz exceeds 70 μs.

In case of an Asynchronous Tama, a ComputingTime error is issued if the task is not finished after four
10 kHz cycles and Duration10kHz exceeds 70 μs.

4.5 Performance Tuning
Consult this chapter if you have grown your Tama program up to a complexity where available comput-
ing time is exceeded.

The Tama program is programmed in C#. Compilers translate this source code into bytecode instructions
which can be examined in the assembly file *.asm (see section 3.6).

As a rule of thumb, the drive is able to process up to 1500 bytecode instructions per 10 kHz cycle. The
total number depends on the configuration and state of the servo drive.

Each command in the Tama source code generates a number bytecode instructions. As an example, the
following table shows the number of bytecode instructions required for some C# statements:

SWTAMA_UserGuide_EP004 2025-02-14 19 /26

https://en.wikipedia.org/wiki/Call_stack
https://triamec.com/

Code # bytecode instructions

Register.Application.Variables.Floats[0] =

 Register.Application.Variables.Floats[1];

4

Register.Application.Variables.Floats[0] =

 Math.Sin(Register.Application.Variables.Floats[1]);

5

Register.Application.Variables.Floats[0] =

 Register.Application.Variables.Floats[1] * Math.PI;

6

Register.Application.Variables.Floats[0] =

 Register.Application.Variables.Floats[1] *

 Register.Application.Variables.Floats[1];

7

For example, the second example above may be repeated approximately 300 times in one 10 kHz cycle
without causing a computing time error.

5. Advanced Topics
This chapter provides some more insight into the tools used when writing Tama programs and alterna-
tives ways to use them.

5.1 Tama File Compilation
Refining the build process in figure 6, we can see that multiple tools are involved:

The Tama Compiler is a piece of software provided by Triamec which produces Tama programs. The
compiler is integrated into the build process of your project by means of the Triamec.Tools.TamaCom-
piler NuGet package, available on nuget.org. Additionally, the Triamec.Tam.TriaLink or Triamec.-
Tam.EtherCAT NuGet packages are necessary to provide the register layout libraries.

SWTAMA_UserGuide_EP004 2025-02-14 20 /26

Figure 8: The Tama Compiler takes the output of the C# compiler and produces
Tama programs.

Build Tama CompilerC# Compiler

C# source code
(.cs)
C# source code
(.cs)

C# source code
(.cs)
C# source code
(.cs)

C# source code
(.cs)
C# source code
(.cs)

MSIL assembly
(.dll)
MSIL assembly
(.dll) Tama assembly

(.tama)
Tama assembly
(.tama)

Tama assembly
(.tama)
Tama assembly
(.tama)

Tama assembly
(.tama)
Tama assembly
(.tama)

https://www.nuget.org/
https://triamec.com/

As described in chapter 3.6, the Tama programs are placed by the compiler in the project’s output and
within the Triamec workspace.
You may suppress the latter by adding an MSBuild property TamacCopyOutputsToWorkspace and
setting it to false in the project file.

NoticeNotice Since the Tama compiler takes a managed library as input, it is possible in principle to use
any programming language targeting .NET to produce Tama programs, for example, Visual
Basic or C++/CLI. Please contact us if you plan to use such a language, as these scenarios
haven’t been tested.

The following subsections describe ways to invoke the Tama Compiler outside a development environ-
ment.

5.1.1 Compiler Shortcut

With the installation of the TAM Software, a “Tama Compiler” link will be created in the Triamec
workspace (like figure 9).

Dragging one or several C# source files over the link invokes the compilation. The output is placed be-
neath the first provided source file.

Feel free to copy the link to your favorite entry point, say your desktop.

5.1.2 Command Line Interface

The Tama compiler executable can be accessed via the command line interface or the Tama compiler
shortcut.
As shown in figure 2, the Tama compiler accepts a .NET dynamic link library as input.

Calling
 tamac /?

on a command line will show a list of options, given the executable is on the path:

Tama Compiler 5.11.1 version 5.0.0.0

SWTAMA_UserGuide_EP004 2025-02-14 21 /26

Figure 9: Tama compiler shortcut within the Triamec workspace, opened via the TAM System Explorer menu
Just drag a C# Tama program source file over the icon for compilation.

https://triamec.com/

Copyright © 2022 Triamec Motion AG

/optimize[+|-] Whether to produce an optimized Tama binary Default value:'+' (short form /o)
/verbose Whether to produce verbose output (short form /v)
/nologo Default value:'-' (short form /n)
@<file> Read response file for more options
<assembly> Dynamic link library containing Tama tasks

CautionCaution The referred Tama, register and other libraries need to be beneath the compiled library
with the correct version. Otherwise, unexpected errors will occur.

However, for the developer's convenience, the Tama compiler also accepts C# source file(s).

For options, type
 tamac test.cs /?

on the command line. The output will be placed beneath the first provided source file.

5.1.3 Legacy Change History

This is the former change log of the Triamec.Tools.TamaCompiler NuGet package.

As of version 5.13.4, these changes are documented in the NuGet package’s release notes.

Version 5.13.3

 CHG: Rename Math.Fabs to Math.Abs, lining up with System.Math.Abs.
 BUG: Addresses a TAMAC0013: “Value with unsupported bit width used.” false positive when the

compiler encounters a 64-bit operation prior the first register layout reference.
 BUG: Fix an issue with the emitted binary when using structs or doubles in static fields, which could

lead to the program rejected as illegal by the runtime for no obvious reason.

Version 5.13.2

 CHG: Limits number of generated errors to 100.
 BUG: Handles errors upon the attempt to use types from the .NET core libraries more gracefully.

Version 5.13.1

 BUG: Restores compatibility with Microsoft Visual Studio < 2022, regressed in 5.13.0.

Version 5.13.0

 NEW: Supports .NET Core projects, invocation via the dotnet build tool, and portable symbol
files.

 CHG: Deprecates the axis coupling tasks Axis1Init, Axis1Coupling, Axis2Init and
Axis2Coupling. Remove the task attributes from the original methods and add a new task like
this:

static bool _initialized;

[TamaTask(Task.IsochronousMain)]
static void Main() {

if (Register.Axes_0.Signals.General.AxisState == AxisState.TamaCoupledMotion) {
if (!_initialized) {

_initialized = true;
Initialize();

}
Couple();

SWTAMA_UserGuide_EP004 2025-02-14 22 /26

https://www.nuget.org/packages/Triamec.Tools.TamaCompiler
https://triamec.com/

} else _initialized = false;
}

Version 5.12.0

 NEW: Supports bit field registers.

For notes about older releases, look at a copy of the predecessor of this user guide, the Tama Compiler
User Guide.

5.2 API

This chapter isn’t about authoring Tama programs, but about transferring them to the device and con-
trolling their execution.

In the API, there is the TamaManager root instance within an ITamDevice providing all the functional-
ity related to Tama programs.

Tama Programs are represented by the TamaAssembly class.

The two instances running the isochronous and asynchronous tasks are the Tama Virtual Machines,
represented by a respective TamaVirtualMachine class.

5.2.1 Transfer to the Device

Tama programs are located within the device's memory reserved for registers, called code memory.

To prepare a transfer, set the TamaNode.TamaAssemblyPath to the path of a Tama program. A trans-

SWTAMA_UserGuide_EP004 2025-02-14 23 /26

Figure 10: The Triamec.Tam.Tama API

TamaAssembly
Class

Properties

DownloadInfo
IsBackedOnDisk
IsEmpty
Path

Methods

GetBinaryData

TamaNode

TamNodeComposite<ITamDevice, TamaVirtualMachine>
Sealed Class

Properties

HasCode
IsBusy
TamaAssemblyPath
VerifiedTamaAssemblyPath

Methods

Dismiss
DoDownload (+ 1 overload)
DoDownloadAsync
SynchronizeTamaAssembly

Events

DownloadCompleted
DownloadProgressChanged

TamaVirtualMachine
Sealed Class

Properties

ProgramCommandRegister
ProgramStateRegister
StateRegister

Methods

Disable
DisableAndVerify
Enable
EnableAndVerify
Initialize

Events

Transition

ITamDevice

3 base interfaces
Interface

Properties

IsochronousBasePeriod
RegisterLayoutId
TamaVirtualMachineId

Methods

ResetFault

Events

AnyTransition
TamaVirtualMachineType
Enum

Asynchronous
Isochronous

TamaVirtualMachineState
Enum

NoCode
NoStack
Ready
Operational

ITamaNodeComponent
ITamRequestSource
ITamRequestDestination

Parent

AsynchronousVM

IsochronousVM

UnverifiedAssembly

ParentTamaNode

MachineType
TamaManager

https://triamec.com/

fer will not be permitted if the RLID or VMID of the Tama program don’t match with the device.

Start the transfer with one of the DoDownload or DoDownloadAsync methods.

If you’ve set the path to the empty string, the virtual machines are stopped and the current Tama pro-
gram is dismissed.

Otherwise, the new Tama program is

1. transferred
2. verified
3. both AsynchronousMainState and IsochronousMainState registers reset to 0, and
4. the static constructor of the Tama program is run.

5.2.2 Virtual Machines

Tama programs are interpreted by the firmware using Tama virtual machines. At start-up, no code is
loaded. When a Tama program is transferred to the device, it gets verified. Both virtual machines get
initialized. In order to execute the task, the virtual machine needs to be enabled. It may also be dis-
abled, and the Tama program as a whole may be dismissed.

5.2.3 Controlling and Monitoring

A task of a Tama program typically waits for a command before it starts executing. Often, a state is
maintained for control flow, monitoring and debugging.

SWTAMA_UserGuide_EP004 2025-02-14 24 /26

Figure 11: Tama Virtual Machine State Diagram

Isochronous
TamaVM

Asynchronous
TamaVM

NoCodeNoCode

NoStackNoStack

ReadyReady

OperationalOperational

Verify Dismiss

Initialize

Enable Disable

NoCodeNoCode

NoStackNoStack

ReadyReady

Initialize

Enable Disable

Verify

Error

OperationalOperational

Error

https://triamec.com/

Both state and command registers are integers, but consider to use constants or enumerations for state
and command values.

For additional input/output, general purpose floating point and integer registers are reserved for Tama
programs.

Refer to chapter 3.3 for more information about about registers.

The TamaVirtualMachine.Transition event allows to track the state changes of a Tama program,
given that the predefined state register is actually used as provided.

CautionCaution Don’t change the state too often, as explained in the chapter about TamaControl registers.

Refer to the TAM API Developer Manual [2], chapter 6.3: Requests for general considerations about
transition events.

5.3 Firmware Evolution
As new features are added to the device firmware, its interface, the register layout, changes. This does
not change the Register Layout ID. Therefore, the TAM API and the firmware releases need to roughly
correspond. That said, the changes to the register layout are applied in a backward compatible manner,
so you don't need to take care about this.

Using a newly introduced register in a Tama program causes error 6973 when transferring it to a device
running an aged firmware release [6]. This happens immediately at the end of the transfer, the device
doesn’t execute any of such code in this case.

Likewise, a register introduced in a new firmware release isn't available in an old TAM Software version
as well.

In both cases, consult the firmware release notes to identify a more feasible TAM Software release.
Please update the Triamec.Tam.TriaLink or Triamec.Tam.EtherCat NuGet package, respec-
tively, to the corresponding version. The TAM Software release is referred to in the release notes of the
NuGet package. An overview of all versions is given in the TAM Software release table [7].

References
[1] “Servo Drive Setup Guide”, ServoDrive-SetupGuide_EP021.pdf, Triamec Motion AG, 2023
[2] “TAM API Developer Manual”, SWNET_TamApiDeveloperManual_EP048.pdf, Triamec Motion AG,

2023
[3] “TAMA Compiler API and Error Documentation”, SWTAMA_ApiAndErrorReference-

5.11.1_EP001.chm, Triamec Motion AG, 2022
Accessed using TAM System Explorer, menu Help > Documentation > Software.

[4] "Transformation PathPlanning”, AN113_TransformationPathPlanning_EP001.pdf, Triamec Motion
AG, 2017

[5] “Triamec Drive File System”, AN124_Filesystem_EP005.pdf, Triamec Motion AG 2023
[6] “Drive messages”, AN102_DriveMessages_EP, Triamec Motion AG, 2024
[7] “TAM Software Release Table”, SWNET_ReleaseTable, Triamec Motion AG, 2024

SWTAMA_UserGuide_EP004 2025-02-14 25 /26

https://triamec.com/

Revision History
Version Date Editor Comment

001 2024-05-17 DG,
chm

Consolidate Tama Compiler user guide, TAM System Explorer handling of Tama pro-
grams and API documentation in one single document

004 2025-01-24 chm Renamed Isochronous/AsynchronousStackOffset registers to IsochronousPc etc.

SWTAMA_UserGuide_EP004 2025-02-14 26 /26

Copyright © 2025
Triamec Motion AG
All rights reserved.

Triamec Motion AG
Lindenstrasse 16
6340 Baar / Switzerland

Phone +41 41 747 4040
Email info@triamec.com
Web www.triamec.com

Disclaimer
This document is delivered subject to the following conditions and restrictions:

 This document contains proprietary information belonging to Triamec Motion AG. Such information
is supplied solely for the purpose of assisting users of Triamec products.

 The text and graphics included in this manual are for the purpose of illustration and reference only.
The specifications on which they are based are subject to change without notice.

 Information in this document is subject to change without notice.

http://www.triamec.com/
mailto:info@triamec.com
https://triamec.com/

	Table of Contents
	1. Introduction
	2. Quick Start Example
	2.1 Preparations
	2.2 Open and Build in Visual Studio
	2.3 Load and Run the Tama Program
	2.4 Create Your Own Programs

	3. Authoring Tama Programs
	3.1 Principal Structure
	3.2 Isochronous and Asynchronous Tama Task
	3.2.1 Isochronous Main Task
	3.2.2 Asynchronous Main Task
	3.2.3 Multiple Tama Tasks in one Tama Program

	3.3 TAM Registers
	3.3.1 TAM Register Layout ID (RLID)
	3.3.2 Signals
	3.3.3 Commands
	CommitParameter:
	Inject Command:

	3.3.4 Parameters
	How to Find the Commit Group

	3.3.5 Application Registers
	Parameters and Variables
	Tables
	Axes
	TamaControl

	3.4 Errors and Limitations
	3.4.1 Initialization
	Initialization Rules
	No Array Initializers

	3.4.2 Memory Isolation of Tasks
	3.4.3 No Register Caching
	Compound Assignments

	3.4.4 No Support for 64-Bit Integers and Other Types
	Unordered Floating Point Values

	3.4.5 No Recursive Calls
	3.4.6 No Generics and Tuples

	3.5 Combine Multiple Programs
	3.6 Build Process

	4. Running Tama Programs
	4.1 Loading and Enabling
	4.1.1 Saving a Tama Program Persistent on the Device
	4.1.2 Saving a Tama Program in a TAM Configuration File
	4.1.3 Auto Start

	4.2 Debugging
	Debugging Tama Runtime Errors

	4.3 Tama Runtime Errors
	4.4 Task Load Monitoring
	4.5 Performance Tuning

	5. Advanced Topics
	5.1 Tama File Compilation
	5.1.1 Compiler Shortcut
	5.1.2 Command Line Interface
	5.1.3 Legacy Change History

	5.2 API
	5.2.1 Transfer to the Device
	5.2.2 Virtual Machines
	5.2.3 Controlling and Monitoring

	5.3 Firmware Evolution

	References
	Revision History

