
Triamec Drive File System

Application Note 124

A description of the file system of Triamec drives and how it is accessed. This allows reading and writing
tables, i.e. for compensation data and accessing log files via the drive’s web server.
The file system is available in firmware 4.11 and newer and is accessible with a TAM System Explorer
version 7.15 or newer, or with a browser.

Table of Contents

1 Browser Access......................................2
1.1 Directory..3
1.2 Transfer Files to Drive....................3

2 Software Access.....................................4

2.1 TAM API...4
2.2 Low level interface........................4

References...7

Revision History.....................................7

Document AN124_Filesystem_EP
Version 011, 2025-02-12
Source Q:\doc\ApplicationNotes\
Destination T:\doc\ApplicationNotes
Owner mvx www.triamec.com

https://www.triamec.com/
https://triamec.com/

1 Browser Access
The entry point to the file system is the web server of the drive. For that, a valid connection to the drive
has to be set up (see [1]). Be aware that different connection types might not have the same perfor-
mance (round trip time, etc.).

The most intuitive way of accessing the file system is using the TAM System Explorer. Use the context
menu of the drive node as shown in Figure 1. Choose the menu item Browse and a browser window
will open as in Figure 2. This is the entry point of the drive web server and file system access (HTTP ac-
cess).

Figure 1: The context menu with the browse entry.

Figure 2: The browser window of the entry point.

This page contains two links, which are important for the file system: The directory and the transfer to
drive. These are explained in the next two chapters.

Hint:Hint: Please note that file system access over USB and PCI requires a running TAM System
Explorer. See (1) for technical details.

1 The IP address of the entry point depends on the connection type. If using USB or PCI, this address is generated by the
TAM System Explorer and this type of connection is only available as long as the Explorer runs. Over Ethernet, this IP ad-
dress is independent of the TAM System Explorer and is discussed in AN123.

AN124_Filesystem_EP011 2025-02-12 2 /7

https://triamec.com/

1.1 Directory
Open the directory using the link and the browser page
Figure 3 appears.

The left column shows all the files, the drive knows. The
second column shows the actual size in bytes. The third
column is the maximum allowed size of each file.

 If an entry is marked as a link, the file contains data
and may be loaded from the drive to the PC by click-
ing on its link.

 If the entry is plain text (without link), the file is
empty and the entry is used as an indication of the
maximum size of the file.

1.2 Transfer Files to Drive
Choose the transfer to the drive link in chapter 1
and the browser page Figure 4 opens.

 In the entry Filepath in drive enter a path and
file name as available in the directory (see Fig-
ure 3).

 In the entry Select from PC choose the file on
your PC that you want to transfer to the drive.

 Then choose Start to start transmitting.

Once the browser responses with upload of tables/small4.TAMtbl succeeded, the file has been saved
successfully to the drive ram and is accessible from Tama code.

Warning:Warning: If a file is a persistent file, the internal saving to the permanent memory is not finished
at this time. This process starts immediately after the browser finished transmitting and
may take up to one second. You can work with the drive as usual and upload other files,
but you should not power down the drive during this phase.

AN124_Filesystem_EP011 2025-02-12 3 /7

Figure 4: The transfer-a-file page

Figure 3: The directory page of the file system.

https://triamec.com/

2 Software Access

2.1 TAM API
Use the DeviceWebService from the Triamec.Tam.Core NuGet for convenient handling of the file sys-
tem within .NET.

2.2 Low level interface
External software can access the filesystem using the IP-address shown in chapter 1. This is especially
useful if the PC is connected with the drive over its auxiliary Ethernet port. With a TCP connection to
port 80, external software can read and write files discussed in this document. The following code snip-
pets show how to read and write a file.

All possible files are listed using “GET /dir”.

Reading a file from the drive

Reading is done with a standard HTTP GET from the drive. To read the table “tables/small1.TAMtbl” use
“GET /tables/small1.TAMtbl”. The following samples read the table “small1” from the drive, if the drive
is connected using its AUTO-IP address 169.254.222.222.

using C#

var FilePath = new Uri("tables/small1.TAMtbl", UriKind.Relative); // URL to file

var baseAddress = new Uri("http://169.254.222.222/"); // drive URL

var client = new HttpClient { BaseAddress = baseAddress };

var response = new HttpResponseMessage(HttpStatusCode.Forbidden);

using (var request = new HttpRequestMessage() {

 RequestUri = FilePath,

 Method = HttpMethod.Get,

 }) {

 if (client.BaseAddress != null) {

 response = await client.SendAsync(request).ConfigureAwait(false);

 }

 }

 if (response.StatusCode == HttpStatusCode.OK) {

 using (var fileStream = await response.Content.ReadAsStreamAsync().ConfigureAwait(false)) {

 // ...add deserialize code here

 }

 }

using JavaScript

const fs = require('fs');

const axios = require('axios');

const FormData = require('form-data');

AN124_Filesystem_EP011 2025-02-12 4 /7

http://169.254.222.222/
https://triamec.com/

async function uploadFile(filePath, driveIP) {

 try {

 const data = await fs.promises.readFile(filePath);

 const formData = new FormData();

 formData.append('filename', 'tables/small1.TAMtbl');

 formData.append('filepath', data, { filename: 'anyname.bin' });

 const response = await axios.post('http://' + driveIP + '/put.html', formData, {

 headers: {

 ...formData.getHeaders(),

 'Content-Length': formData.getLengthSync()

 }

 });

 console.log('Response:', response.data);

 } catch (error) {

 console.error('Error uploading file:', error);

 }

}

uploadFile('dataRead.bin', '169.254.222.222');

Writing a file to the drive

Files are written using HTTP POST with a specially formatted MultipartForm object. It must contain a
string component "filename" and a stream component “filepath”. The following samples write a file
"sample.bin" to the drive table “small1”, if the drive is connected using its AUTO-IP address
169.254.222.222.

using C#

var targetName = "tables/small1.TAMtbl";

var source = new FileStream("sample.bin", FileMode.Open); // stream of sample.bin to be transfered

var uploadSite = new Uri("put.html", UriKind.Relative); // URL for file transfer

var baseAddress = new Uri("http://169.254.222.222/"); // drive URL

var client = new HttpClient { BaseAddress = baseAddress };

using (var content = new MultipartFormDataContent {

 { new StringContent(targetName), "filename" },

 { new StreamContent(source), "filepath" }

 })

using (var response = await client.PostAsync(uploadSite, content)

 .ConfigureAwait(continueOnCapturedContext: false))

{

 if (!response.IsSuccessStatusCode)

 {

 throw new HttpRequestException($"Transfer to device at {targetName} failed.
{response.ReasonPhrase}");

 }

}

AN124_Filesystem_EP011 2025-02-12 5 /7

http://169.254.222.222/
https://triamec.com/

using JavaScript

// Create a Blob from the binaryData ArrayBuffer

const blob = new Blob([binaryData], { type: 'application/octet-stream' });

// Create a FormData object and append the Blob to it

let formData = new FormData();

const tableSlot = 'tables/small1.TAMtbl';

formData.append('filename', tableSlot);

formData.append('filepath', blob);

// Use the Fetch API to send the FormData to the specified URL

const response = await fetch('http://169.254.222.222/put.html', {

 method: 'POST',

 body: formData,

});

if (response.ok) {

 console.log('Binary data sent successfully.');

}

else {

 throw new Error(`Failed to send binary data. Status: ${response.status}`);

}

AN124_Filesystem_EP011 2025-02-12 6 /7

https://triamec.com/

References
[1] “Servo Drive Setup Guide”, ServoDrive-SetupGuide_EP027.pdf, Triamec Motion AG, 2024.

Revision History

Version Date Editor Comment

001 2021-04-26 mvx First release

002 2021-09-07 dg renamed ColumnSize to RowSize

‍003 2023-03-02 sm update template, fix header index 18 type, minor wording changes

004 2023-05-30 sm Introduce Table Type for firmware contained features.

005 2023-08-16 sm Fix index of Table Type.

006 2023-11-16 mvx New interface for reading data of a table in firmware 4.20

‍007 2024-02-07 dg Fix table path: /table/small1.TAMtbl → /tables/small1.TAMtbl

‍008 2024-03-11 ns Fix JavaScript spelling

‍009 2024-04-11 dg Size of /table/large1.TAMtbl increased to 2’000’000

‍010 2024-08-09 fm Small review and added reference

011 2025-02-12 ns Move Table content to AN125

AN124_Filesystem_EP011 2025-02-12 7 /7

Copyright © 2025
Triamec Motion AG
All rights reserved.

Triamec Motion AG
Lindenstrasse 16
6340 Baar / Switzerland

Phone +41 41 747 4040
Email info@triamec.com
Web www.triamec.com

Disclaimer
This document contains proprietary information belonging to Triamec Motion AG and must not be dis-
tributed.

This document is delivered subject to the following conditions and restrictions:

 This document contains proprietary information belonging to Triamec Motion AG. Such information
is supplied solely for the purpose of assisting users of Triamec products.

 The text and graphics included in this manual are for the purpose of illustration and reference only.
The specifications on which they are based are subject to change without notice.

 Information in this document is subject to change without notice.

http://www.triamec.com/
mailto:info@triamec.com
https://triamec.com/

	Table of Contents
	1 Browser Access
	1.1 Directory
	1.2 Transfer Files to Drive

	2 Software Access
	2.1 TAM API
	2.2 Low level interface
	Reading a file from the drive
	using C#
	using JavaScript

	Writing a file to the drive
	using C#
	using JavaScript

	References
	Revision History

